
Package: gplite (via r-universe)
August 20, 2024

Title General Purpose Gaussian Process Modelling

Version 0.13.0

Description Implements the most common Gaussian process (GP) models
using Laplace and expectation propagation (EP) approximations,
maximum marginal likelihood (or posterior) inference for the
hyperparameters, and sparse approximations for larger datasets.

Depends R (>= 3.4.0),

Imports Matrix, methods, Rcpp

LinkingTo Rcpp, RcppArmadillo

License GPL-3

Encoding UTF-8

Biarch TRUE

RoxygenNote 7.2.0

Suggests testthat, knitr, rmarkdown, ggplot2

VignetteBuilder knitr

Repository https://jpiironen.r-universe.dev

RemoteUrl https://github.com/jpiironen/gplite

RemoteRef HEAD

RemoteSha 5b5fe7c6a45e4020e43bf3dcb6ff6ee5e2d51d32

Contents
gplite-package . 2
approx . 2
cf . 3
gp_draw . 6
gp_energy . 9
gp_fit . 10
gp_init . 11
gp_loo . 12
gp_optim . 14

1

2 approx

gp_saveload . 16
lik . 17
method . 18
param . 20
priors . 21

Index 23

gplite-package The ’gplite’ package.

Description

gplite implements some of the most common Gaussian process (GP) models. The package of-
fers tools for integrating out the latent values analytically using Laplace or expectation propagation
(EP) approximation and for estimating the hyperparameters based on maximizing the (approximate)
marginal likelihood or posterior. The package also implements some common sparse approxima-
tions for larger datasets.

Functions

Here’s a list of the most important functions:

gp_init Set up the GP model.
cf, lik, method, approx Choose the covariance functions, likelihood (observation model), type of

the GP (full or some sparse approximation) and the latent function approximation method
(Laplace, EP).

gp_optim, gp_fit Optimize the model hyperparameters, or just fit the model with the current hy-
perparameter values.

gp_pred, gp_draw Make predictions with the fitted model. Can also be used before fitting to
obtain prior predictive distribution or draws.

gp_loo, gp_compare Model assessment and comparison using leave-one-out (LOO) cross-validation.

approx Approximations to the posterior of the latent values

Description

Functions for initializing the approximation for the latent values, which can then be passed to
gp_init. The supported methods are:

approx_laplace Laplace’s method, that is, based on local second order approximation to the log
likelihood. For Gaussian likelihood, this means exact inference (no approximation).

approx_ep Expectation propagation, EP. Approximates the likelihood by introducing Gaussian
pseudo-data so that the posterior marginals match to the so called tilted distributions (leave-
one-out posterior times the true likelihood factor) as closely as possible. Typically more accu-
rate than Laplace, but slower.

cf 3

Usage

approx_laplace(maxiter = 30, tol = 1e-04)

approx_ep(damping = 0.9, quad_order = 11, maxiter = 100)

Arguments

maxiter Maximum number of iterations in the Laplace/EP iteration.

tol Convergence tolerance.

damping Damping factor for EP. Should be between 0 and 1. Smaller values typically
lead to more stable iterations, but also increase the number of iterations, and
thus make the algorithm slower.

quad_order Order of the Gauss-Hermite quadrature used to evaluate the required tilted mo-
ments in EP.

Value

The approximation object.

References

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT
Press.

Examples

Basic usage
gp <- gp_init(

cfs = cf_sexp(),
lik = lik_bernoulli(),
method = method_fitc(num_inducing = 100),
approx = approx_ep()

)

cf Initialize covariance function

Description

Functions for initializing the covariance functions which can then be passed to gp_init. See section
Details for explanation of what covariance function is what.

4 cf

Usage

cf_const(magn = 1, prior_magn = prior_logunif())

cf_lin(vars = NULL, magn = 1, prior_magn = prior_logunif(), normalize = FALSE)

cf_sexp(
vars = NULL,
lscale = 0.3,
magn = 1,
prior_lscale = prior_logunif(),
prior_magn = prior_logunif(),
normalize = FALSE

)

cf_matern32(
vars = NULL,
lscale = 0.3,
magn = 1,
prior_lscale = prior_logunif(),
prior_magn = prior_logunif(),
normalize = FALSE

)

cf_matern52(
vars = NULL,
lscale = 0.3,
magn = 1,
prior_lscale = prior_logunif(),
prior_magn = prior_logunif(),
normalize = FALSE

)

cf_nn(
vars = NULL,
sigma0 = 1,
sigma = 3,
magn = 1,
prior_sigma0 = prior_half_t(),
prior_sigma = prior_half_t(),
prior_magn = prior_logunif(),
normalize = TRUE

)

cf_periodic(
vars = NULL,
period = 1,
cf_base = cf_sexp(),
prior_period = prior_logunif()

cf 5

)

cf_prod(...)

S3 method for class 'cf'
cf1 * cf2

Arguments

magn Initial value for the magnitude hyperparameter (depicts the magnitude of the
variation captured by the given covariance function).

prior_magn Prior for hypeparameter magn. See priors.

vars Indices of the inputs which are taken into account when calculating this covari-
ance. If the input matrix has named columns, can also be a vector of column
names. Default is all the inputs.

normalize Whether to automatically scale and center the inputs for the given covariance
function. Can be useful for inputs with mean and variance far from 0 and 1,
respectively.

lscale Initial value for the length-scale hyperparameter.

prior_lscale Prior for hyperparameter lscale. See priors.

sigma0 Prior std for the bias in the neural network covariance function.

sigma Prior std for the weights in the hidden layers of the neural network covariance
function.

prior_sigma0 Prior for hyperparameter sigma0. See priors.

prior_sigma Prior for hyperparameter sigma. See priors.

period Period length for the periodic covariance function.

cf_base Base covariance function that is used to model the variability within each period
in periodic covariance function.

prior_period Prior for hyperparameter period. See priors.

... Meaning depends on context. For cf_prod pass in the covariance functions in
the product.

cf1 Instance of a covariance function.

cf2 Instance of a covariance function.

Details

The supported covariance functions are (see Rasmussen and Williams, 2006):

cf_const Constant covariance function. Can be used to model the intercept.

cf_lin Linear covariance function. Produces linear functions.

cf_sexp Squared exponential (or exponentiated quadratic, or Gaussian) covariance function.

cf_matern32 Matern nu=3/2 covariance function.

cf_matern52 Matern nu=5/2 covariance function.

6 gp_draw

cf_nn Neural network covariance function.

cf_periodic Periodic covariance function. The periodicity is achieved by mapping the original
inputs through sine and cosine functions, and then applying the base kernel in this new space.

cf_prod Product of two or more covariance functions.

Value

The covariance function object.

References

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT
Press.

Examples

Generate some toy data
set.seed(1242)
n <- 50
x <- matrix(rnorm(n * 3), nrow = n)
f <- sin(x[, 1]) + 0.5 * x[, 2]^2 + x[, 3]
y <- f + 0.5 * rnorm(n)
x <- data.frame(x1 = x[, 1], x2 = x[, 2], x3 = x[, 3])

Basic usage (single covariance function)
cf <- cf_sexp()
lik <- lik_gaussian()
gp <- gp_init(cf, lik)
gp <- gp_optim(gp, x, y)
plot(gp_pred(gp, x)$mean, y)

More than one covariance function; one for x1 and x2, and another one for x3
cf1 <- cf_sexp(c("x1", "x2"))
cf2 <- cf_lin("x3")
cfs <- list(cf1, cf2)
lik <- lik_gaussian()
gp <- gp_init(cfs, lik)
gp <- gp_optim(gp, x, y, maxiter = 500)
plot(gp_pred(gp, x)$mean, y)
plot(x[, 3], gp_pred(gp, x, cfind = 2)$mean) # plot effect w.r.t x3 only

gp_draw Make predictions with a GP model

gp_draw 7

Description

Function gp_pred can be used to make analytic predictions for the latent function values at test
points, whereas gp_draw can be used to draw from the predictive distribution (or from the prior if
the GP has not been fitted yet.)

Usage

gp_draw(
gp,
xnew,
draws = NULL,
transform = TRUE,
target = FALSE,
marginal = FALSE,
cfind = NULL,
jitter = NULL,
seed = NULL,
...

)

gp_pred(
gp,
xnew,
var = FALSE,
quantiles = NULL,
transform = FALSE,
cfind = NULL,
jitter = NULL,
quad_order = 15,
...

)

Arguments

gp A GP model object.

xnew N-by-d matrix of input values (N is the number of test points and d the input
dimension). Can also be a vector of length N if the model has only a single
input.

draws Number of draws to generate from the predictive distribution for the latent val-
ues.

transform Whether to transform the draws of latent values to the same scale as the target y,
that is, through the response (or inverse-link) function.

target If TRUE, draws values for the target variable y instead of the latent function
values.

marginal If TRUE, then draws for each test point are only marginally correct, but the co-
variance structure between test points is not retained. However, this will make

8 gp_draw

the sampling considerably faster in some cases, and can be useful if one is inter-
ested only in looking at the marginal predictive distributions for a large number
of test locations (for example, in posterior predictive checking).

cfind Indices of covariance functions to be used in the prediction. By default uses all
covariance functions.

jitter Magnitude of diagonal jitter for covariance matrices for numerical stability. De-
fault is 1e-6.

seed Random seed for draws.

... Additional parameters that might be needed. For example offset or keyword
trials for binomial and beta-binomial likelihoods.

var Whether to compute the predictive variances along with predictive mean.

quantiles Vector of probabilities between 0 and 1 indicating which quantiles are to be
predicted.

quad_order Quadrature order in order to compute the mean and variance on the transformed
scale.

Value

gp_pred returns a list with fields giving the predictive mean, variance and quantiles (the last two
are computed only if requested). gp_draw returns an N-by-draws matrix of random draws from the
predictive distribution, where N is the number of test points.

References

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT
Press.

Examples

Generate some toy data
set.seed(1242)
n <- 50
x <- matrix(rnorm(n * 3), nrow = n)
f <- sin(x[, 1]) + 0.5 * x[, 2]^2 + x[, 3]
y <- f + 0.5 * rnorm(n)
x <- data.frame(x1 = x[, 1], x2 = x[, 2], x3 = x[, 3])

More than one covariance function; one for x1 and x2, and another one for x3
cf1 <- cf_nn(c("x1", "x2"), prior_sigma0 = prior_half_t(df = 4, scale = 2))
cf2 <- cf_sexp("x3")
cfs <- list(cf1, cf2)
lik <- lik_gaussian()
gp <- gp_init(cfs, lik)
gp <- gp_optim(gp, x, y, maxiter = 500)

plot the predictions with respect to x1, when x2 = x3 = 0
xt <- cbind(x1 = seq(-3, 3, len = 50), x2 = 0, x3 = 0)
pred <- gp_pred(gp, xt)
plot(xt[, "x1"], pred$mean, type = "l")

gp_energy 9

draw from the predictive distribution
xt <- cbind(x1 = seq(-3, 3, len = 50), x2 = 0, x3 = 0)
draws <- gp_draw(gp, xt, draws = 100)
plot(xt[, "x1"], draws[, 1], type = "l")
for (i in 2:50) {

lines(xt[, "x1"], draws[, i])
}

plot effect with respect to x3 only
xt <- cbind("x3" = seq(-3, 3, len = 50))
pred <- gp_pred(gp, xt, cfind = 2)
plot(xt, pred$mean, type = "l")

gp_energy Energy of a GP model

Description

Returns the energy (negative log marginal likelihood) of a fitted GP model with the current hyper-
parameters. The result is exact for the Gaussian likelihood and dependent on the approx for other
cases.

Usage

gp_energy(gp, include_prior = TRUE)

Arguments

gp The fitted GP model.

include_prior Whether to add log density of the prior to the result (in which case the result is
-(log marginal likelihood + log prior))

Value

The energy value (negative log marginal likelihood).

References

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT
Press.

10 gp_fit

Examples

Generate some toy data
set.seed(1242)
n <- 500
x <- matrix(rnorm(n * 3), nrow = n)
f <- sin(x[, 1]) + 0.5 * x[, 2]^2 + x[, 3]
y <- f + 0.5 * rnorm(n)
x <- data.frame(x1 = x[, 1], x2 = x[, 2], x3 = x[, 3])

Basic usage
gp <- gp_init(cf_sexp(), lik_gaussian())
gp <- gp_fit(gp, x, y)
e <- gp_energy(gp)

gp_fit Fit a GP model

Description

Function gp_fit fits a GP model with the current hyperparameters. Notice that this function does
not optimize the hyperparameters in any way, but only finds the analytical posterior approxima-
tion (depending on chosen approx) for the latent values with the current hyperparameters. For
optimizing the hyperparameter values, see gp_optim.

Usage

gp_fit(gp, x, y, trials = NULL, offset = NULL, jitter = NULL, ...)

Arguments

gp The gp model object to be fitted.

x n-by-d matrix of input values (n is the number of observations and d the input
dimension). Can also be a vector of length n if the model has only a single input.

y Vector of n output (target) values.

trials Vector of length n giving the number of trials for each observation in binomial
(and beta binomial) model.

offset Vector of constant values added to the latent values f_i (i = 1,...,n). For Poisson
models, this is the logarithm of the exposure time in each observation.

jitter Magnitude of diagonal jitter for covariance matrices for numerical stability. De-
fault is 1e-6.

... Currently ignored

gp_init 11

Value

An updated GP model object.

References

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT
Press.

Examples

Generate some toy data
set.seed(32004)
n <- 150
sigma <- 0.1
x <- rnorm(n)
ycont <- sin(3 * x) * exp(-abs(x)) + rnorm(n) * sigma
y <- rep(0, n)
y[ycont > 0] <- 1
trials <- rep(1, n)

Fit the model using Laplace approximation (with the specified hyperparameters)
cf <- cf_sexp(lscale = 0.3, magn = 3)
gp <- gp_init(cf, lik_binomial())
gp <- gp_fit(gp, x, y, trials = trials)

gp_init Initialize a GP model

Description

Initializes a GP model with given covariance function(s) and likelihood. The model can then be
fitted using gp_fit. For hyperparameter optimization, see gp_optim

Usage

gp_init(
cfs = cf_sexp(),
lik = lik_gaussian(),
method = method_full(),
approx = approx_laplace()

)

12 gp_loo

Arguments

cfs The covariance function(s). Either a single covariance function or a list of them.
See cf.

lik Likelihood (observation model). See lik.

method Method for approximating the covariance function. See method.

approx Approximate inference method for Gaussian approximation for the posterior of
the latent values. See approx.

Value

A GP model object that can be passed to other functions, for example when optimizing the hyper-
parameters or making predictions.

References

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT
Press.

Examples

Full exact GP with Gaussian likelihood
gp <- gp_init(

cfs = cf_sexp(),
lik = lik_gaussian(),
method = method_full()

)

Binary classification model with EP approximation for the latent values
and FITC sparse approximation to facilitate large datasets
gp <- gp_init(

cfs = cf_sexp(),
lik = lik_bernoulli(),
approx = approx_ep(),
method = method_fitc(num_inducing = 100)

)

gp_loo Model assessment and comparison

Description

Function gp_loo computes the approximate leave-one-out (LOO) cross-validation statistics for the
given GP model with the current hyperparameters. Function gp_compare estimates the difference
in the expected predictive accuracy of two or more GP models given their LOO statistics.

gp_loo 13

Usage

gp_loo(
gp,
x,
y,
quadrature = TRUE,
quad_order = 11,
draws = 4000,
jitter = NULL,
seed = NULL,
...

)

gp_compare(..., ref = NULL)

Arguments

gp The gp model object to be fitted.

x n-by-d matrix of input values (n is the number of observations and d the input
dimension). Can also be a vector of length n if the model has only a single input.

y Vector of n output (target) values.

quadrature Whether to use deterministic Gauss-Hermite quadrature to estimate the required
integrals. If FALSE, then Monte Carlo estimate is used.

quad_order Order of the numerical quadrature (only applicable if quadrature=TRUE).

draws Number of posterior draws to estimate the required integrals (only applicable if
quadrature=FALSE).

jitter Magnitude of diagonal jitter for covariance matrices for numerical stability. De-
fault is 1e-6.

seed Random seed.

... For gp_compare, LOO statistics for the models to compare. For gp_loo, possi-
ble additional data that is required for LOO predictions (for example, argument
trials in case of binomial likelihood).

ref Index of the model against which to compare the other models (pairwise com-
parison for LOO difference). If not given, then the model with the best LOO is
used as the reference for comparisons.

Value

gp_loo returns a list with LOO statistics. gp_compare returns a matrix with comparison statistics
(LOO differences and stardard errors in the estimates).

References

Vehtari A., Mononen T., Tolvanen V., Sivula T. and Winther O. (2016). Bayesian Leave-One-
Out Cross-Validation Approximations for Gaussian Latent Variable Models. Journal of Machine
Learning Research 17(103):1-38.

14 gp_optim

Examples

Generate some toy data
set.seed(32004)
n <- 50
sigma <- 0.1
x <- rnorm(n)
ycont <- sin(3 * x) * exp(-abs(x)) + rnorm(n) * sigma
y <- rep(0, n)
y[ycont > 0] <- 1
trials <- rep(1, n)

Set up two models
gp1 <- gp_init(cf_sexp(), lik_binomial())
gp2 <- gp_init(cf_matern32(), lik_binomial())

Optimize
gp1 <- gp_optim(gp1, x, y, trials = trials)
gp2 <- gp_optim(gp2, x, y, trials = trials)

Compare
loo1 <- gp_loo(gp1, x, y, trials = trials)
loo2 <- gp_loo(gp2, x, y, trials = trials)
gp_compare(loo1, loo2)

gp_optim Optimize hyperparameters of a GP model

Description

This function can be used to optimize the hyperparameters of the model to the maximum marginal
likelihood (or maximum marginal posterior if priors are used), using Nelder-Mead algorithm.

Usage

gp_optim(
gp,
x,
y,
tol = 1e-04,
tol_param = 0.1,
maxiter = 500,
restarts = 1,
verbose = TRUE,
warnings = TRUE,
...

)

gp_optim 15

Arguments

gp The gp model object to be fitted.

x n-by-d matrix of input values (n is the number of observations and d the input
dimension). Can also be a vector of length n if the model has only a single input.

y Vector of n output (target) values.

tol Relative change in the objective function value (marginal log posterior) after
which the optimization is terminated. This will be passed to the function stats::optim
as a convergence criterion.

tol_param After the optimizer (Nelder-Mead) has terminated, the found hyperparameter
values will be checked for convergence within tolerance tol_param. More pre-
cisely, if we perturb any of the hyperparameters by the amount tol_param or
-tol_param, then the resulting log posterior must be smaller than the value with
the found hyperparameter values. If not, then the optimizer will automatically
attempt a restart (see argument restarts). Note: tol_param will be applied for the
logarithms of the parameters (e.g. log length-scale), not for the native parameter
values.

maxiter Maximum number of iterations.

restarts Number of possible restarts during optimization. The Nelder-Mead iteration
can sometimes terminate prematurely before a local optimum is found, and this
argument can be used to specify how many times the optimization is allowed to
restart from where it left when Nelder-Mead terminated. By setting restarts > 0,
one can often find local optimum without having to call gp_optim several times.
Note: usually there is no need to allow more than a few (say 1-3) restarts; if the
optimization does not converge with a few restarts, then one usually must try to
reduce argument tol in order to achieve convergence. If this does not help either,
then the optimization problem is usually ill-conditioned somehow.

verbose If TRUE, then some information about the progress of the optimization is printed
to the console.

warnings Whether to print out some potential warnings (such as maximum number of
iterations reached) during the optimization.

... Further arguments to be passed to gp_fit that are needed in the fitting process,
for example trials in the case of binomial likelihood.

Value

An updated GP model object.

References

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT
Press.

Examples

Generate some toy data
set.seed(1242)

16 gp_saveload

n <- 50
x <- matrix(rnorm(n * 3), nrow = n)
f <- sin(x[, 1]) + 0.5 * x[, 2]^2 + x[, 3]
y <- f + 0.5 * rnorm(n)
x <- data.frame(x1 = x[, 1], x2 = x[, 2], x3 = x[, 3])

Basic usage
cf <- cf_sexp()
lik <- lik_gaussian()
gp <- gp_init(cf, lik)
gp <- gp_optim(gp, x, y)

gp_saveload Save and load a GP model

Description

Convenience functions for saving and loading GP models.

Usage

gp_save(gp, filename)

gp_load(filename)

Arguments

gp The gp model object to be saved.
filename Where to save or load from.

Value

gp_load returns the loaded GP model object.

Examples

gp <- gp_init()

fit the model (skipped here)

save the model
filename <- file.path(tempdir(), 'gp.rda')
gp_save(gp, filename)

load the model and remove the file
gp <- gp_load(filename)
file.remove(filename)

lik 17

lik Initialize likelihood

Description

Functions for initializing the likelihood (observation model) which can then be passed to gp_init.

Usage

lik_gaussian(sigma = 0.5, prior_sigma = prior_logunif())

lik_bernoulli(link = "logit")

lik_binomial(link = "logit")

lik_betabinom(link = "logit", phi = 1, prior_phi = prior_logunif())

lik_poisson(link = "log")

Arguments

sigma Initial value for the noise standard deviation.

prior_sigma Prior for hyperparameter sigma. See priors.

link Link function if the likelihood supports non-identity links. See Details for in-
formation about possible links for each likelihood.

phi The over dispersion parameter for beta binomial likelihood.

prior_phi Prior for hyperparameter phi. See priors.

Details

The supported likelihoods are:

lik_gaussian Gaussian likelihood. Has no links (uses identity link).

lik_bernoulli Bernoulli likelihood. Possible links: ’logit’ or ’probit’.

lik_binomial Binomial likelihood. Possible links: ’logit’ or ’probit’.

lik_betabinom Beta binomial likelihood. Possible links: ’logit’ or ’probit’.

lik_poisson Poisson likelihood. Possible links: ’log’.

Value

The likelihood object.

18 method

Examples

Basic usage
cf <- cf_sexp()
lik <- lik_binomial()
gp <- gp_init(cf, lik)

method Initialize method or type of the model

Description

Functions for initializing the method or type of the model, which can then be passed to gp_init.
The supported methods are:

method_full Full GP, so full exact covariance function is used, meaning that the inference will be
for the n latent function values (fitting time scales cubicly in n).

method_fitc Fully independent training (and test) conditional, or FITC, approximation (see Quiñonero-
Candela and Rasmussen, 2005; Snelson and Ghahramani, 2006). The fitting time scales
O(n*m^2), where n is the number of data points and m the number of inducing points num_inducing.
The inducing point locations are chosen using the k-means algorithm.

method_rf Random features, that is, linearized GP. Uses random features (or basis functions) for
approximating the covariance function, which means the inference time scales cubicly in the
number of approximating basis functions num_basis. For stationary covariance functions
random Fourier features (Rahimi and Recht, 2007) is used, and for non-stationary kernels
using case specific method when possible (for example, drawing the hidden layer parameters
randomly for cf_nn). For cf_const and cf_lin this means using standard linear model, and
the inference is performed on the weight space (not in the function space). Thus if the model
is linear (only cf_const and cf_lin are used), this will give a potentially huge speed-up if
the number of features is considerably smaller than the number of data points.

Usage

method_full()

method_fitc(
inducing = NULL,
num_inducing = 100,
bin_along = NULL,
bin_count = 10,
seed = 12345

)

method_rf(num_basis = 400, seed = 12345)

method 19

Arguments

inducing Inducing points to use. If not given, then num_inducing points will be placed
in the input space using a clustering algorithm.

num_inducing Number of inducing points for the approximation. Will be ignored if the induc-
ing points are given by the user.

bin_along Either an index or a name of the input variable along which to bin the values
before placing the inducing inputs. For example, if bin_along=3, then the input
data is divided into bin_count bins along 3rd input variable, and each bin will
have the same number inducing points (or as close as possible). This can some-
times be useful to ensure that inducing points are spaced evenly with respect to
some particular variable, for example time in spatio-temporal models.

bin_count The number of bins to use if bin_along given. Has effect only if bin_along is
given.

seed Random seed for reproducible results.

num_basis Number of basis functions for the approximation.

Value

The method object.

References

Rahimi, A. and Recht, B. (2008). Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems 20.

Quiñonero-Candela, J. and Rasmussen, C. E (2005). A unifying view of sparse approximate Gaus-
sian process regression. Journal of Machine Learning Research 6:1939-1959.

Snelson, E. and Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. In Ad-
vances in Neural Information Processing Systems 18.

Examples

#' # Generate some toy data
NOTE: this is so small dataset that in reality there would be no point
use sparse approximation here; we use this small dataset only to make this
example run fast
set.seed(1242)
n <- 50
x <- matrix(rnorm(n * 3), nrow = n)
f <- sin(x[, 1]) + 0.5 * x[, 2]^2 + x[, 3]
y <- f + 0.5 * rnorm(n)
x <- data.frame(x1 = x[, 1], x2 = x[, 2], x3 = x[, 3])

Full exact GP with Gaussian likelihood
gp <- gp_init(cf_sexp())
gp <- gp_optim(gp, x, y)

Approximate solution using random features (here we use a very small

20 param

number of random features only to make this example run fast)
gp <- gp_init(cf_sexp(), method = method_rf(num_basis = 30))
gp <- gp_optim(gp, x, y)

Approximate solution using FITC (here we use a very small
number of incuding points only to make this example run fast)
gp <- gp_init(cf_sexp(), method = method_fitc(num_inducing = 10))
gp <- gp_optim(gp, x, y)

param Get or set GP model parameters

Description

get_param returns the current hyperparameters of the GP model in a vector. set_param can be
used to set the parameters. Note that these functions are intended mainly for internal usage, and
there is typically no need to use these functions directly but instead create a new GP model using
gp_init.

Usage

get_param(object, ...)

set_param(object, param, ...)

Arguments

object The model object.

... Ignored currently.

param The parameters to be set. Call first get_param to see the order in which the
parameters should be given for a particular model. Notice that all positive pa-
rameters should be given in a log-scale.

Value

get_param returns the current hyperparameters and set_param the GP model structure with the
new parameter values.

Examples

Set up some model
gp <- gp_init(cf = cf_sexp(), lik = lik_gaussian())

print out to see the parameter ordering
param <- get_param(gp)
print(param)

priors 21

set some new values
param_new <- log(c(0.1, 0.8, 0.3))
names(param_new) <- names(param)
gp <- set_param(gp, param_new)

check the result
print(get_param(gp))

priors Initialize prior for hyperparameter

Description

Functions for initializing hyperparameter priors which can then be passed to gp_init. See section
Details for the prior explanations.

Usage

prior_fixed()

prior_logunif()

prior_lognormal(loc = 0, scale = 1)

prior_half_t(df = 1, scale = 1)

Arguments

loc Location parameter of the distribution

scale Scale parameter of the distribution

df Degrees of freedom

Details

The supported priors are:

prior_fixed The hyperparameter is fixed to its initial value, and is not optimized by gp_optim.

prior_logunif Improper uniform prior on the log of the parameter.

prior_lognormal Log-normal prior (Gaussian prior on the logarithm of the parameter).

prior_half_t Half Student-t prior for a positive parameter.

Value

The hyperprior object.

22 priors

References

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT
Press.

Examples

Quasi-periodic covariance function, with fixed period
cf1 <- cf_periodic(

period = 5,
prior_period = prior_fixed(),
cf_base = cf_sexp(lscale = 2)

)
cf2 <- cf_sexp(lscale = 40)
cf <- cf1 * cf2
gp <- gp_init(cf)

draw from the prior
set.seed(104930)
xt <- seq(-10, 10, len = 500)
plot(xt, gp_draw(gp, xt), type = "l")

Index

*.cf (cf), 3

approx, 2, 2, 9, 10, 12
approx_ep (approx), 2
approx_laplace (approx), 2

cf, 2, 3, 12
cf_const (cf), 3
cf_lin (cf), 3
cf_matern32 (cf), 3
cf_matern52 (cf), 3
cf_nn (cf), 3
cf_periodic (cf), 3
cf_prod (cf), 3
cf_sexp (cf), 3

get_param (param), 20
gp_compare, 2
gp_compare (gp_loo), 12
gp_draw, 2, 6
gp_energy, 9
gp_fit, 2, 10, 11, 15
gp_init, 2, 3, 11, 17, 18, 21
gp_load (gp_saveload), 16
gp_loo, 2, 12
gp_optim, 2, 11, 14
gp_pred, 2
gp_pred (gp_draw), 6
gp_save (gp_saveload), 16
gp_saveload, 16
gplite (gplite-package), 2
gplite-package, 2

lik, 2, 12, 17
lik_bernoulli (lik), 17
lik_betabinom (lik), 17
lik_binomial (lik), 17
lik_gaussian (lik), 17
lik_poisson (lik), 17

method, 2, 12, 18

method_fitc (method), 18
method_full (method), 18
method_rf (method), 18

param, 20
pred (gp_draw), 6
prior_fixed (priors), 21
prior_half_t (priors), 21
prior_lognormal (priors), 21
prior_logunif (priors), 21
priors, 5, 17, 21

set_param (param), 20

23

	gplite-package
	approx
	cf
	gp_draw
	gp_energy
	gp_fit
	gp_init
	gp_loo
	gp_optim
	gp_saveload
	lik
	method
	param
	priors
	Index

